# **Open Source Imaging Initiative (OSI<sup>2</sup>)** Bringing affordable magnetic resonance imaging (MRI) to the world

Dr. Lukas Winter <sup>1</sup> (info@opensourceimaging.org)

<sup>1</sup> Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany

**Complex & Costly** 

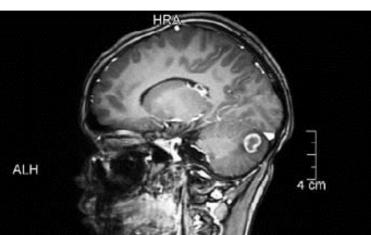
Plus annual costs of

1-2.5 mio € for a scanner

120.000€ maintenance

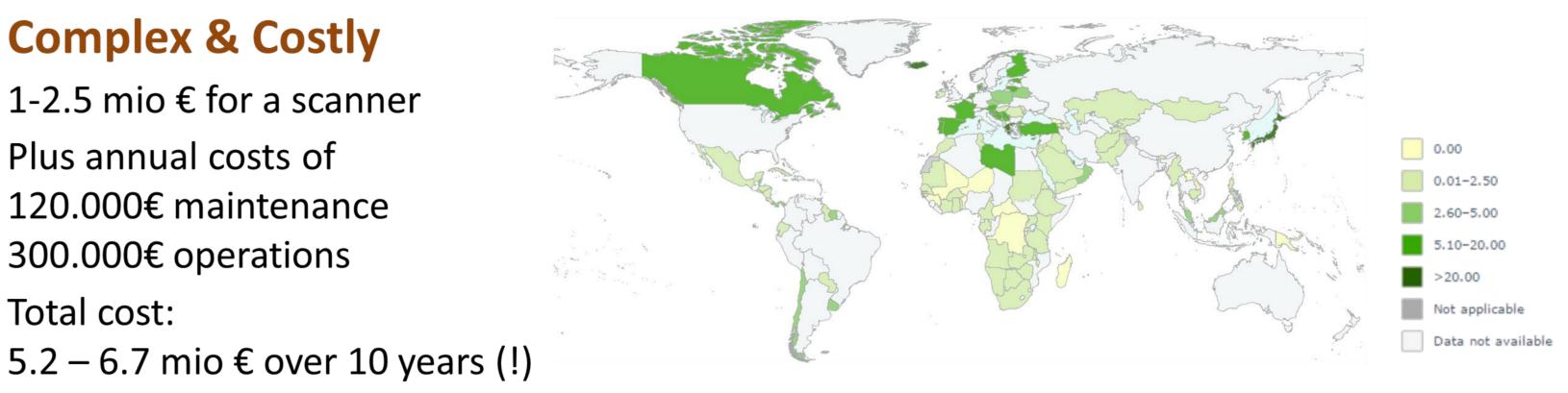
300.000€ operations

Total cost:


## Problem

#### Why is MRI important?

Most **powerful** clinical imaging modality today


to the early diagnosis and Key infectious successful treatment of diseases (tuberculosis), musculoskeletal diseases (osteitis), injuries and injuries), (brain/spinal trauma cord (breast cancer), lung diseases cancer





#### Global MRI scarcity<sup>1</sup>

(density per million population)



#### (pneumonia), etc.



Developing countries: Very limited or **no access** to MRI Long waiting times for an exam (>30 days in France<sup>2</sup>) Industrialized countries:

#### **Black-box design causes**

- **slow progress** in research, education, collaboration and innovation
- costly products and maintenance<sup>3</sup>
- profit-oriented rather than global need-oriented product development

# Solution

A Roadmap

for Open Source research and development

### **Knowledge sharing**

and collaboration

Ensuring

patient safety

#### **Community Building**

- Connecting the research, industry and maker communities for open source value creation
- Connecting medical doctors and developers • (collaboration with OneWorldDoctors.org)



ISMRM Doctors



open source hardware

### **Open Sourcing Research** & Development

- Guidelines for open source hardware licenses  $\bullet$
- Legal frameworks for open source hardware in research institutions
- Documentation and **publication strategies**

#### Quality, Reliability, Safety

- **Guidelines** for hardware development for a smooth transition from research prototype to medical device
- Collaborations with experts in the **certification** of medical devices and OpenQRS

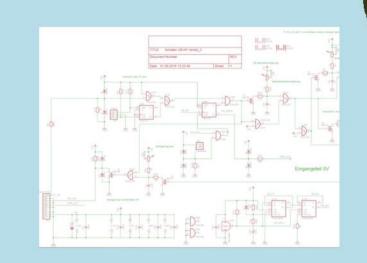


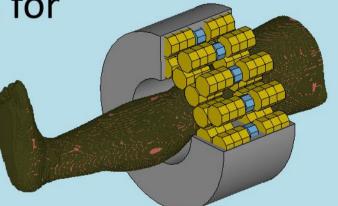
#### Education

- Clear documentation and manuals  $\bullet$
- **Training** developers and staff  $\bullet$
- Interdisciplinary collaborations  $\bullet$






#### **Business Opportunities**


- Customized and local production
- Maintenance and service
- Training and workshops
- Certification

### Building Open Source MR Hardware

- B<sub>0</sub>=0.2T MRI (<10.000€)</li>
- **"mobile**" <100kg
- No liquid helium/nitrogen needed
- No power needed for the magnet
- Simple push-button scans
- Safer operation at low field
- Quiet scanning •
- **Open source** documentation
- Open source development of lab equipment for building and testing the device















#### Learning to develop, implement, maintain and understand





Physikalisch Technische

#### **Creating regional markets with stable low prices:**

global access to MR Hardware

#### Lower costs of acquisition, maintenance and operation

**References:** <sup>1</sup>World Health Organization, "Global Health Obervatory (GHO) data: Medical equipment (density per million population)", 2014 <sup>2</sup>Rylands-Monk F., "French MRI waiting times arouse fresh controversy", Aunt Minnie Europe, 2015 <sup>3</sup>Sferrella S, "Equipment Service: Total Cost of Ownership, Radiology Business, Dec 28 2012

MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT



