Open Source Imaging Initiative (OSI²) – Update and Roadmap

Felix Arndt¹, Sebastian Aussenhofer², Eva Behrens³, Christian Blücher³, Peter Blümler⁴, Janko Brand⁵, Kate Michi Ettinger⁶, Ariane Fillmer⁷, William Grissom⁸, Bernhard Gruber^{9,10}, Bastien Guerin^{11,12}, Sergej Haas¹³, Haopeng Han³, Michael Hansen¹⁴, Christopher Jordan Hasselwander⁸, Russ Hodge³, Werner Hoffmann⁷, Bernd Ittermann⁷, Marcin Jakubowski¹⁵, Andre Kühne¹⁶, Stefan Klein¹⁷, Stefan Kroboth¹⁸, Mark Ladd^{19,20}, Kelvin Layton²¹, Brian Leiva, Sebastian Littin¹⁸, Blanca López-Aranguren Blázquez, Kasper Marstal¹⁷, Ralf Mekle²², Manuel Moritz²³, Raphael Moritz³, Thoralf Niendorf^{3,16,24}, Ruben Pellicer²⁵, Mihir Pendse²⁶, Athanasios Polimeridis²⁷, Tobias Redlich²³, Henning Reiman³, Reiner Seemann⁷, Frank Seifert⁷, Ludger Starke³, Jason Stockmann²⁸, Tony Stoecker²⁹, Kazuyuki Takeda³⁰, Lukas Thiele, Martin Uecker³¹, Florian von Knobelsdorff-Brenkenhoff³², Robert Wahlstedt³³, Andrew Webb³⁴, Simone Winkler³⁵, Lukas Winter³, Huijun Yu¹⁸, and Maxim Zaitsev¹⁸

¹Facility for Antiproton and Ion Research in Europe GmbH, Darmstadt, Germany, ²Noras MRI products GmbH, Höchberg, Germany, ³Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany, ⁴Institute of Physics, University of Mainz, Mainz, Germany, ⁵One World Doctors, Berlin, Germany, ⁶Mural Institute, San Francisco, CA, United States, ⁷Physikalisch Technische Bundesanstalt (PTB), Berlin, Germany, ⁸Biomedical Engineering, Vanderbilt University, Nashville, TN, United States, ⁹Institute of Biomedical Mechatronics, Johannes Kepler University, Linz, Austria, ¹⁰Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands, ¹¹Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States, ¹²Harvard Medical School, Boston, MA, United States, ¹³Haasdesign, Erkrath, Germany, ¹⁴National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States, ¹⁵Open Source Ecology, MO, United States, ¹⁶MRI.TOOLS GmbH, Berlin, Germany, ¹⁷Biomedical Imaging Group Rotterdam, Depts. of Medical Informatics & Radiology, Erasmus MC, Rotterdam, Netherlands, ¹⁸Department of Radiology – Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany, ¹⁹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, ²⁰Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany, ²¹Institute for Telecommunications Research, University of South Australia, Mawson Lakes, Australia, ²²Center for Stroke Research Berlin (CSB), Charité Universitätsmedizin, Berlin, Germany, ²³Institute for Production Engineering, Helmut Schmidt University, Hamburg, Germany, ²⁴Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany, ²⁵Centre for Advanced Imaging, University of Queensland, Brisbane, Australia, ²⁶Stanford University, Stanford, CA, United States, ²⁷Skolkovo Institute of Science and Technology, Moscow Region, Russian Federation, ²⁸A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States, ²⁹German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany, ³⁰Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan, ³¹Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany, ³²Cardiology at Agatharied Hospital, University of Munich, Hausham, Germany, ³³Regenerative Science Institute Spokane, Washington, WA, United States, ³⁴C.J. Gorter Center for High Field MRI, Dept of Radiology, Leiden University Medical Center, Leiden, Netherlands, ³⁵Lucas Center for Imaging, Dept of Radiology, Stanford University, Stanford, CA, United States

Synopsis

*authors are listed in alphabetical order

The aim of the open source imaging initiative (OSI²) is to collaboratively share research in MR technology and building a quality, affordable open source MR scanner. Combining innovation and open source (OS) approaches will generate global value by reproducible science and development and will allow a major reduction of investments and operational costs with the guiding principle: From the community, for the community. OSI² (www.opensourceimaging.org) was presented for the first time at the ISMRM 2016. Here we present an update and a roadmap towards the fulfillment of our vision.

Purpose

MRI is an essential medical diagnostic tool that is beyond the reach of many patients throughout the world¹. The aim of the open source imaging initiative (OSI²) is to address this issue collaboratively. Combining innovation and open source (OS) approaches will permit a major reduction of investment and operational costs with the guiding principle: From the community, for the community.

OSI² was presented for the first time at the ISMRM 2016². Here we present an update and a roadmap towards the fulfillment of our vision, which consists of six goals (Fig.1):

- 1. Open Source Software/Hardware Development
- 2. Guidelines for Open Source Research and Development
- 3. Community Building
- 4. Education
- 5. Quality, Reliability and Safety
- 6. Businesses and Distribution

www.opensourceimaging.org was launched on May 6th, 2016, as a communications platform centered on the above goals.

Open Source Software/Hardware Development

Our software/hardware developments follow a modular approach to stimulate independent developments and exchangeable components in a research setting. A first prototype MR system (B_0 =0.2T;<100kg) is under construction³. As soon as the system is tested, we will provide all documentation necessary for its reproduction.

submissions.mirasmart.com/ISMRM2017/ViewSubmission.aspx?sbmID=193

To reduce the cost and size of magnets and permit safer operation and simple reproducibility, we are currently focusing on permanent magnets in Halbach arrangements⁴⁻⁵ (Fig.2). We have implemented a transmit/receive system ready for pulse generation and amplification ($P_{peak}=1kW$;f=1.8-54MHz;~3000€;(50x30x35)cm³) (Fig.2). We use GNUradio⁶ compatible software defined radios as spectrometers enabling hardware independent pulse sequence developments in an OS-framework⁷⁻⁸. This setup has been extended to drive traditional and rotating spatial encoding schemes⁹.

Our efforts are not limited to specific hardware. We encourage the community to develop and exchange alternative approaches.

Guidelines for Open Source Research and Development

To generate global value, science and development need to be reproducible and transparent. Our initial efforts highlight current OS projects (Fig.3) (>20 project uploads within six months). Our monthly newsletter will provide news and project updates.

We started collecting guidelines on licensing/patents/liability etc. Such legal blueprints are an international necessity and will help peers who also wish to open source their work.

We will include similar information on documentation and publication strategies. Providing OS software/hardware documentation along with a scientific publication accelerates the reproducibility of science, benefits from peer-reviewing and rewards authors with visibility and citations. We encourage researchers to publish in journals that promote OS software/hardware publications¹⁰.

We have supported a petition to form an ISMRM Study Group on Reproducible Research.

Community Building

We encourage knowledge sharing and collaboration. We have presented our vision at various events including the ISMRM² and the World Health Summit¹¹ and have initiated active collaborations with the research, industry, OS product development¹² and medical doctor¹³ communities. We have begun implementing communication channels for software/hardware/general discussions and are striving towards more open forms of communication, in order to support better understanding, participation, and shaping of our vision by potential contributors.

Education

Education stands on transparency. Providing the widest possible access to documentation, manuals, data, and source code fosters the training of users and developers. Providing communication channels for exchange stimulates interdisciplinary collaborations. We highly encourage researchers to go the extra mile and document their work openly, which will provide easy global access to knowledge for students, researchers and developers.

Quality, Reliability and Safety

Typically, the quality, reliability and safety of medical devices is assured through government-based oversight systems¹⁴⁻¹⁵. In these cases we want to create development guidelines based on current standards that will allow a smooth transition from research prototypes to medical devices. These guidelines will also help developers in low- and middle-income countries, where the requirements for demonstrations of device safety may be arbitrary or completely absent. We are collaborating with OpenQRS¹⁶⁻¹⁷ in a long-term vision to implement open data systems to inform users and the public about the quality, reliability and safety of health care devices.

Businesses and Distribution

OSI² represents a not-for-profit movement. Nevertheless, business partners will be important to boost distribution and ensure quality. Open source research and development of MR hardware has the potential to lower investment/service costs, increase competition, create local markets with stable low prices, and encourage product customizations. The success of this strategy has already been observed in the 3D printer market. The same approach will culminate in opening up new business opportunities and in improving the global distribution of medical devices, thereby improving diagnostics and care for millions of patients worldwide.

Conclusion

Through new forms of transparent collaboration, we hope to lay the groundwork for global access to affordable, high-quality medical devices. Please visit www.opensourceimaging.org or contact us at info@opensourceimaging.org to contribute your knowledge and expertise and help us make this vision a reality.

Acknowledgements

No acknowledgement found.

References

¹ WHO, Baseline country survey on medical devices, 2014., http://gamapserver.who.int/gho/interactive_charts/health_technologies/medical_equipment/atlas.html

² Winter L, et al., "The Open Source Imaging Initiative", ISMRM, 2016. #3638

³ Berlin Ultrahigh Field Facility (B.U.F.F.), MDC-Berlin, Germany

⁴ Winter L, et al., "COSI Magnet: Halbach Magnet and Halbach Gradient Designs for Open Source Low Cost MRI", ISMRM, 2016. #3568

⁵ P. Blümler, "Proposal for a permanent magnet system with a constant gradient mechanically adjustable in direction and strength," Conc Magn Reson Part B: Magn Reson Eng, 2016. 46:41-48

⁶ GNU Radio, http://gnuradio.org/

⁷ C. Hasselwander, Z. Cao, and Grissom WA, "gr-MRI: A Software Package for Magnetic Resonance Imaging Using Software Defined Radios", JMR, 2016. 270:47-55

submissions.mirasmart.com/ISMRM2017/ViewSubmission.aspx?sbmID=193

⁸ Layton KJ, et al., "Pulseq: A rapid and hardware-independent pulse sequence prototyping framework", MRM, 2016. doi:10.1002/mrm.26235, http://pulseq.github.io/

⁹ C. Z. Cooley, et al., "Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils," MRM, 2015. 73:872-883

¹⁰ HardwareX, http://www.journals.elsevier.com/hardwarex/

¹¹ Winter L, "The Open Source Imaging Initiative", World Health Summit Berlin, Oct 2016. www.worldhealthsummit.org

12 Open Source Ecology, http://opensourceecology.org/

¹³ One World Doctors, https://oneworlddoctors.org/

¹⁴ Food and Drug Administration (FDA), USA

¹⁵ EU Medical Device Directive 93/42/EEC

¹⁶ OpenQRS, http://www.openqrs.org/

¹⁷ Ettinger KM, et al., "Building quality mHealth for low resource settings", J Med Eng Tech, 2016.

Figures

Figure 1 - Illustration of the six goals of the open source imaging initiative (OSI²): Open Source Hardware Development, Guidelines for Open Source Research and Development, Community Building, Quality/Reliability/Safety, Education and Distribution.

Figure 2 – Overview of types of current open source hardware developments. (left) Magnet designs such as permanent magnet Halbach arrangements for traditional and rotating spatial encoding schemes, (middle) open source radio frequency transmission/reception hardware and (right) open source lab equipment such as a programmable field measurement device.

Figure 3 – Screenshot of the categorized view of the projects currently uploaded to www.opensourceimaging.org. Each project page contains a summary of the main features of the corresponding software or hardware tools as well as information on the contact persons, version, license, costs, publication, source file location and development/documentation websites.